
Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-1

Chapter 3. DATA_TYPE Values and Data File
Storage Formats

Each PDS archived product is described using label objects that provide information about the
data types of stored values. The data elements DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE appear together with related elements defining starting location and length for
each field. In PDS data object definitions the byte, bit, and record positions are counted from left
to right, or first to last encountered, and always begin with 1.

Data files may be in ASCII or binary format. ASCII format is often more easily transferred
between hardware systems or even application programs on the same computer.
Notwithstanding, numeric data are often stored in binary files when the ASCII representation
would require substantially more storage space. (For example, each 8-bit signed pixel value in a
binary image file would require a four-byte field if stored as an ASCII table.)

3.1 Data Elements
Table 3.1 identifies by object the data elements providing type, location, and length information.
The elements ITEMS and ITEM_BYTES are used to subdivide a single COLUMN, FIELD,
BIT_COLUMN, or HISTOGRAM into a regular vector containing as many elements as
specified for the value of ITEMS. In these objects the DATA_TYPE must indicate the type of a
single item in the vector. In the past, the data element ITEM_TYPE was used for this purpose,
but DATA_TYPE is now the preferred parameter.

3.2 Data Types
Table 3.2 identifies the valid values for the DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE data elements used in PDS data object definitions. The values for these
elements must be one of the standard values listed in the Planetary Science Data Dictionary
(PSDD). Please note:

• In all cases, these standard values refer to the physical storage format of the data in
the data file.

• In some cases, obsolete values from previous versions of the PDS Standards have
been retained as aliases for more specific values (the type “INTEGER”, for example,
is interpreted as “MSB_INTEGER” when it is encountered). In these cases the more
specific value should always be used in new data sets – the obsolete value is retained
only for backward compatibility. Obsolete values are indicated in the table.

• Aliases have been supplied for some of the generic data types that indicate the kind of
system on which the data originated. For example, “MAC_REAL” is an alias for
“IEEE_REAL”, but “VAX_REAL” has no alias, as the VAX binary storage format is
unique to VAX systems. In general, the more generic term is preferred, but the
system-specific version may be used if needed.

3-2 Chapter 3. DATA_TYPE Values and Data File Storage Formats

Table 3.1: Type Elements Used in Data Label Objects

Data Object Data Elements Notes

COLUMN DATA_TYPE

(without ITEMS) START_BYTE

 BYTES

COLUMN DATA_TYPE alias for ITEM_TYPE

(with ITEMS) START_BYTE

 BYTES (optional) total bytes in COLUMN

 ITEMS

 ITEM_BYTES bytes in each ITEM

BIT_COLUMN BIT_DATA_TYPE

(without ITEMS) START_BIT

 BITS

BIT_COLUMN START_BIT

(with ITEMS) BITS (optional) total bits in BIT_COLUMN

 ITEMS

 ITEM_BITS bits in each ITEM

FIELD DATA_TYPE if populated
 (no items) FIELD_NUMBER
 BYTES maximum FIELD bytes

FIELD DATA_TYPE if populated
(with items) FIELD_NUMBER
 BYTES maximum bytes in FIELD
 ITEMS
 ITEM_BYTES maximum item bytes

IMAGE SAMPLE_TYPE

 SAMPLE_BITS

HISTOGRAM DATA_TYPE alias for ITEM_TYPE

 BYTES (optional) total bytes in HISTOGRAM

 ITEMS number of bins in HISTOGRAM

 ITEM_BYTES bytes in each ITEM

Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-3

Table 3.2: Standard PDS Data Types

Data Element Usage Codes:

D = DATA_TYPE
B = BIT_DATA_TYPE
S = SAMPLE_TYPE

Usage Value Description

D ASCII_REAL ASCII character string representing a real number; see
Section 5.4 for formatting rules

D ASCII_INTEGER ASCII character string representing an integer; see
Section 5.4 for formatting rules

D ASCII_COMPLEX ASCII character string representing a complex number;
see Section 5.4 for formatting rules

Obsolete BIT_STRING alias for MSB_BIT_STRING

D, B BOOLEAN True/False Indicator: a 1-, 2- or 4-byte integer or 1-32 bit
number. All 0 = False; anything else = True.

D CHARACTER ASCII character string; see Section 5.4 for formatting
rules

Obsolete COMPLEX alias for IEEE_COMPLEX

D DATE ASCII character string representing a date in PDS
standard format; see Section 5.4 for formatting rules

D EBCDIC_CHARACTER EBCDIC character string

Obsolete FLOAT alias for IEEE_REAL

D IBM_COMPLEX IBM 360/370 mainframe complex number (8- or 16-
byte)

D, S IBM_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte signed
integers

D, S IBM_REAL IBM 360/370 mainframe real number (4- or 8-byte)

D, B, S IBM_UNSIGNED_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte unsigned
integers

D IEEE_COMPLEX 8-, 16-, and 20-byte complex numbers

D, S IEEE_REAL 4-, 8- and 10-byte real numbers

Obsolete INTEGER alias for MSB_INTEGER

D LSB_BIT_STRING 1-, 2-, and 4-byte bit strings

D, S LSB_INTEGER 1-, 2-, and 4-byte signed integers

D, B, S LSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers

D MAC_COMPLEX alias for IEEE_COMPLEX

D, S MAC_INTEGER alias for MSB_INTEGER

D, S MAC_REAL alias for IEEE_REAL

D, B, S MAC_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D MSB_BIT_STRING 1-, 2-, and 4-byte bit strings

D, S MSB_INTEGER 1-, 2-, and 4-byte signed integers

D, B, S MSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers

D, B N/A Used only for spare (or unused) fields included in the
data file.

3-4 Chapter 3. DATA_TYPE Values and Data File Storage Formats

D PC_COMPLEX 8-, 16-, and 20-byte complex numbers in IBM/PC format

D, S PC_INTEGER alias for LSB_INTEGER

D, S PC_REAL 4-, 8-, and 10-byte real numbers in IBM/PC format

D, B, S PC_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER

Obsolete REAL alias for IEEE_REAL

D SUN_COMPLEX alias for IEEE_COMPLEX

D, S SUN_INTEGER alias for MSB_INTEGER

D, S SUN_REAL alias for IEEE_REAL

D, B, S SUN_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D TIME ASCII character string representing a date/time in PDS
standard format; see Section 5.4 for formatting rules

Obsolete UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D VAX_BIT_STRING alias for LSB_BIT_STRING

D VAX_COMPLEX Vax F-, D-, and H-type (8-, 16- and 32-byte,
respectively) complex numbers

D, S VAX_DOUBLE alias for VAX_REAL

D, S VAX_INTEGER alias for LSB_INTEGER

D, S VAX_REAL Vax F-, D-, and H-type (4-, 8- and 16-byte, respectively)
real numbers

D, B, S VAX_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER

D VAXG_COMPLEX Vax G-type (16-byte) complex numbers

D, S VAXG_REAL Vax G-type (8-byte) real numbers

3.3 Binary Integers
There are two widely used formats for integer representations in 16-bit and 32-bit binary fields:
most significant byte first (MSB) and least significant byte first (LSB) architectures. The MSB
architectures include IBM mainframes, many UNIX systems such as SUN, and Macintosh
computers. The LSB architectures include VAX systems and IBM PCs. In the original PDS
system the default format was MSB, thus the designation of “INTEGER” and
“UNSIGNED_INTEGER” as aliases of “MSB_INTEGER” and “MSB_UNSIGNED_IN-
TEGER”. New data sets should be prepared using the appropriate specific designation from
Table 3.2, above.

3.4 Signed vs. Unsigned Integers
The “_INTEGER” data types refer to signed, 2’s complement integers. Use the corresponding
“_UNSIGNED_INTEGER” type for unsigned integer and bit string fields.

Chapter 3. DATA_TYPE Values and Data File Storage Formats 3-5

3.5 Floating Point Formats
The PDS default representation for floating point numbers is the ANSI/IEEE standard. This
representation is defined as the IEEE_REAL data type, with aliases identified in Table 3.2.
Several additional specific floating-point representations supported by PDS are described in
Appendix C.

3.6 Bit String Data
The BIT_STRING data types are used in definitions of table columns holding individual bit field
values. A BIT_COLUMN object defines each bit field. BIT_STRING data types can be 1-, 2-, or
4-byte fields, much like a binary integer. Extraction of specific bit fields within a 2- or 4-byte
BIT_STRING is dependent on the host architecture (MSB or LSB). In interpreting bit fields
(BIT_COLUMNS) within a BIT_STRING, any necessary conversions such as byte swapping
from LSB to MSB are done first, then bit field values (START_BIT, BITS) are used to extract
the appropriate bits. This procedure ensures that bit fields are not fragmented due to differences
in hardware architectures.

3.7 Character Data
Specification of character field format in ASCII and binary files pending.

3.8 Format Specifications
Data format specifications provided in the FORMAT element serve two purposes:

1. In an ASCII TABLE data file or SPREADSHEET file, they provide a format which
 can be used in scanning the ASCII record for individual fields; and
2. In a binary data file, they provide a format that can be used to display the
 data values.

A subset of the FORTRAN data format specifiers is used for the values of FORMAT elements.
Valid specifiers include:

Aw Character data value
Iw Integer value
Fw.d Floating point value, displayed in decimal format
Ew.d[Ee] Floating point value, displayed in exponential format

Where:

 w is the total number of positions in the output field (including sign, decimal point, and

exponentiation character – usually “E” – if any);
 d is the number of positions to the right of the decimal point;
 e is the number of positions in exponent length field.

3-6 Chapter 3. DATA_TYPE Values and Data File Storage Formats

3.9 Internal Representations of Data Types
Appendix C contains the detailed internal representations of the PDS standard data types listed in
Table 3.2.

The PDS has developed tools designed to use the specifications contained in Appendix C for
interpreting data values for display and validation.

